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Abstract— Effective long-term financial planning is a critical 

yet challenging task for individuals. This paper addresses the 

limitations of traditional static asset allocation rules by developing 

a framework to generate personalized, time-adaptive investment 

strategies. Leveraging the principles of Dynamic Programming, 

specifically backward induction, a computational engine was 

implemented to solve the lifecycle savings problem as a finite-

horizon optimization task. Experimental results demonstrate that 

the framework successfully derives non-linear asset allocation 

glide paths that are highly sensitive to an investor's goals and time 

horizon. The model reveals complex, rational strategies, such as 

aggressive de-risking when a target is on track and calculated risk-

taking when falling behind. This work validates the application of 

Dynamic Programming as a robust method for creating 

sophisticated, personalized financial advisory tools and provides a 

strong foundation for future development in algorithmic financial 

technology. 

Keywords—Dynamic Programming, Asset Allocation, 

Retirement Planning, Algorithmic Framework, Glide Path. 

I.  INTRODUCTION   

In the modern financial landscape, the responsibility for 
securing long-term financial stability, particularly for 
retirement, has increasingly shifted from institutions to 
individuals. The decline of traditional defined-benefit pension 
plans, coupled with increased life expectancy, has created a 
critical need for effective personal investment strategies. This 
paper addresses the challenge that many individuals face: 
relying on simplistic, static rules-of-thumb which often fail to 
account for personalized goals and the dynamic nature of a 
multi-decade investment horizon. The core problem this study 
tackles is the inadequacy of a one-size-fits-all strategy for a 
problem that is inherently personal and time-sensitive. 

The primary objective of this work is to design, implement, 
and analyze an algorithmic framework that provides a solution 
to the aforementioned problem. This paper is presented as a 
technical report detailing the application of an algorithm 
strategy, with its findings supported by experimental results 
from a purpose-built program. The key contribution is not 
merely the application of a known algorithm, but the 
development of a complete framework that translates an 
individual's personal financial profile into a mathematically 

optimal, dynamic investment policy, often referred to as a "glide 
path". Through this, the work aims to bridge the gap between 
theoretical algorithmic concepts and practical, high-impact 
financial applications, communicating these findings to a wider 
audience. 

To ensure the problem remains computationally tractable 
and the analysis focused, the scope of this study is defined with 
several limitations. The investment model considers two 
primary asset classes (an aggressive and a conservative asset), 
assumes constant long-term market parameters, and does not 
factor in complex variables such as taxes or transaction costs. 
The framework exclusively models the wealth accumulation 
phase of retirement planning. The remainder of this paper is 
organized to detail this work systematically.  

II. THEORITICAL FOUNDATION 

A. Dynamic Programming (DP) 

Dynamic Programming is a mathematical optimization 
method used for solving complex problems by breaking them 
down into a collection of simpler, overlapping subproblems.  

For problems with a finite time horizon, such as the 
retirement planning model in this paper, a specific DP technique 
called Backward Induction is employed. The process begins at 
the final time step, T, where the outcome is known. It then 
iterates backward in time, step by step (t = T-1, T-2, ..., 0). At 
each step, it solves for the optimal action by using the pre-
computed optimal values from the subsequent step, t+1. This 
paper's processing engine is a direct implementation of this 
backward induction method to find the optimal policy. 

B. Modern Portfolio Theory (MPT) and Asset allocation 

Modern Portfolio Theory, pioneered by Nobel laureate 
Harry Markowitz, is a foundational investment theory that 
provides a mathematical framework for assembling a portfolio 
of assets [1]. The core idea of MPT is that an investor can 
construct a portfolio that maximizes the expected return for a 
given level of risk. This is achieved through careful asset 
allocation and diversification. The key concepts include: 
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• Return: The expected gain or loss on an investment 
over a period. 

• Risk: Typically measured as the volatility or standard 
deviation of an asset's returns. 

• The Risk-Return Trade-off: A fundamental principle 
stating that higher potential returns are associated with 
higher risk. 

• Diversification: The practice of spreading investments 
among various financial instruments to reduce overall 
risk. 

The model in this paper navigates the risk-return trade-off by 
creating a portfolio composed of two distinct asset classes: a 
high-risk, high-return "aggressive asset" (representing stocks) 
and a low-risk, low-return "conservative asset" (representing 
bonds). The algorithm's task at each time step is to find the 
optimal allocation percentage between these two assets. 

C. Lifecycle Investing and Glide Paths 

Lifecycle Investing is a financial theory that posits an 
individual's asset allocation should change systematically over 
the course of their life [2]. The central principle is that an 
investor's ability and willingness to take on risk decreases as 
they approach retirement. 

• Young Investors: With a long time horizon, they can 
afford to take on more risk (a higher allocation to 
stocks) to maximize long-term capital growth, as they 
have more time to recover from market downturns. 

• Older Investors: As they near retirement, their priority 
shifts from growth to capital preservation. They should 
therefore reduce their allocation to risky assets to 
protect their accumulated wealth. 

This pre-planned, gradual reduction in portfolio risk over 
time is known as a "Glide Path." It is a common strategy 
implemented in financial products like Target-Date Funds. 

While traditional glide paths are often based on static, 
predetermined rules (e.g., the "100 minus age" rule), the key 
contribution of this paper is to utilize Dynamic Programming to 
derive a personalized and mathematically optimal glide path. 
The generated path is not based on a general rule, but is instead 
tailored to the investor's specific age, financial goals, and 
savings capacity 

III. PROBLEM MODELLING 

The problem is structured as a finite-horizon dynamic 
optimization task, which is well-suited for a Dynamic 
Programming approach. To manage the components of the 
solution, a three-part framework was designed. 

A. Framework Architecture 

The implemented solution is architected as a modular 
framework consisting of three main components: 

1) Input Module 

This component is responsible for capturing the investor's 
unique financial profile. It gathers essential parameters such as 
current age, desired retirement age, initial wealth, monthly 
investment capacity, and the final wealth target. This ensures the 
subsequent optimization is personalized to the user's specific 
circumstances and goals. 

2) Processing Engine 
This is the core of the framework, containing the Dynamic 

Programming engine. It takes the parameters from the Input 
Module and executes the backward induction algorithm to solve 
for the optimal investment policy across the entire time horizon. 

3) Output Module 
This component receives the raw policy data from the 

Processing Engine and transforms it into human-interpretable 
visualizations. It generates the glide path charts and stochastic 
wealth projections, translating the complex numerical output 
into actionable financial insights. 

B. Dynamic Programming Model 

The lifecycle investment problem is formally modeled as a 
finite-horizon dynamic optimization task, which is a 
requirement for this technical report that applies an algorithm 
strategy. The model is defined by the following key components, 
each described in detail below. 

• State Space (S) The State Space defines all possible 
situations an investor can be in at any given time. A 
state, denoted as s_t, must encapsulate all information 
necessary to make a future decision without needing to 
know the history of how that state was reached. In this 
model, a state is sufficiently described by a tuple 
containing the current time and the investor's 
accumulated wealth. Thus, the state is formally 
represented as s_t = (t, W_t), where t represents the 
current year within the total investment horizon (from 
year 0 to the final year T), and W_t represents the total 
monetary value of the portfolio at the start of that year. 

• Action Space (A) The Action Space consists of all 
possible decisions that can be made at any given state. 
For this financial planning problem, the action alpha_t 
corresponds to the core investment decision made in 
year t. It is defined as the fraction, or percentage, of the 
total portfolio to be allocated to the high-risk, high-
return aggressive asset. The value of alpha_t is 
continuous between 0 and 1, inclusive. Consequently, 
the remaining portion of the portfolio, calculated as (1 
- alpha_t), is automatically allocated to the low-risk, 
low-return conservative asset. The set of all possible 
alpha_t values forms the action space available to the 
decision-making policy. 

• State Transition Equation The State Transition 
Equation describes the system's dynamics, dictating 
how the current state evolves into a future state based 
on the action taken. This function calculates the wealth 
at the beginning of the next year, W_{t+1}, based on 
the wealth from the current year, W_t. The model 
assumes that the total annual contribution, C, is added 
to the principal at the start of the year. This new, larger 
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principal is then invested for one year according to the 
chosen allocation alpha_t. The resulting portfolio 
grows based on the weighted average of the expected 
annual returns of the aggressive asset (r_s) and the 
conservative asset (r_c). This entire process defines 
how the wealth component of the state transitions from 
one year to the next. 

• Objective and Terminal Utility Function Finally, the 
Objective Function defines the ultimate goal of the 
optimization process, which is guided by a Terminal 
Utility Function. The overall objective is to find an 
optimal policy, which is a complete plan of actions for 
all possible states, that maximizes the expected utility 
of the final wealth at the retirement year T. To achieve 
this, a utility function, U(W_T), is assigned to the 
terminal wealth states. This function is designed to 
reflect the user's goal. It assigns a value equal to the 
final wealth, W_T, if the user's wealth target is met or 
exceeded. However, to create a strong incentive for the 
algorithm to succeed, a significant penalty is applied if 
the final wealth is below the target. This penalty is 
proportional to the size of the deficit, ensuring that the 
algorithm actively avoids strategies that are projected 
to fail.  

IV. IMPLEMENTATION 

The program was developed as a command-line tool to 
prioritize algorithmic logic and efficiency over user interface 
complexity. 

A. Technology Stack 

The framework was implemented entirely in Python, chosen 
for its robust ecosystem of scientific computing libraries. The 
following key libraries were instrumental in the development: 

• NumPy: This library was fundamental for all numerical 
operations. Its high-performance ndarray objects were 
used to implement the core data structures of the model, 
including the state and action grids, as well as the multi-
dimensional value_table and policy_table. Its 
vectorization capabilities were crucial for efficient 
computation. 

• Matplotlib: All static visualizations, including the glide 
path charts and wealth projections, were generated using 
the Matplotlib library. It provided fine-grained control to 
produce publication-quality graphs that were saved as 
image files for inclusion in this report. 

B. Implementation of the Dynamic Programming Engine 

The core of the program is the Dynamic Programming (DP) 
engine, which implements the backward induction algorithm to 
solve the lifecycle investment problem. 

First, the continuous state space (investor's wealth) and 
action space (asset allocation percentage) were discretized into 
finite grids using NumPy's linspace function. This step is 
essential to transform the problem into a computationally 
tractable format. The main data structures, the policy_table and 
value_table, were initialized as two-dimensional NumPy arrays, 

with dimensions corresponding to the discretized wealth levels 
and time steps (years). 

The engine's primary logic resides in a nested loop structure 
that iterates backward in time, from the final year T-1 down to 
the initial year t=0. For each time step and for each discrete 
wealth level in the grid, the engine evaluates every possible 
allocation action. A key challenge in this step is that a given 
action may result in a future wealth state that falls between the 
discrete points on the wealth grid. This was resolved through 
linear interpolation, implemented efficiently using NumPy's 
interp function. This function estimates the value of the future 
state by interpolating from the already-computed values in the 
value_table of the subsequent time step (t+1). The action that 
maximizes this interpolated future value is then stored as the 
optimal policy for the current state. 

C. Data Generation and Simulation Modules 

Once the backward induction loop completes and the 
policy_table is fully populated, two subsequent processes are 
executed to generate the final results for analysis. 

1) Deterministic Path Extraction 
To visualize a single, representative glide path, a forward 

simulation is performed. Starting with the user's initial wealth, 
this module iteratively determines the optimal allocation for the 
current state by interpolating from the policy_table, calculates 
the resulting wealth in the next year using the mean expected 
returns, and repeats the process for the entire time horizon. This 
generates the primary glide path and deterministic wealth 
projection. 

2) Stochastic Monte Carlo Simulation 
To provide a more realistic view of potential outcomes and 

risk, a Monte Carlo module was implemented. This module 
takes the optimal policy derived from the DP engine and runs 
hundreds of simulations. In each simulation, the annual asset 
returns are not fixed but are drawn randomly from a normal 
distribution defined by the assumed mean return and volatility. 
The aggregate results of these simulations are used to generate 
the probabilistic wealth projection, including the median 
outcome and the confidence interval cone 

V. RESULT AND ANALYSIS 

The primary goal is to analyze the optimal asset allocation 
strategies derived from the Dynamic Programming model and to 
understand the model’s behavior user various user-defined 
scenarios. This paper, presented as a technical report, validates 
the application of this algorithm through these quantitative 
experiments. 

A. Base Case Scenario Analysis 

To establish a baseline, a primary scenario was simulated 
using a typical profile for a young investor. 
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The principal output from the framework is the optimal asset 
allocation glide path, which dictates the percentage of the 
portfolio to be allocated to the aggressive assets (stocks) each 
year. This path is illustrated in Fig. 2 and Fig. 3.

 

The resulting glide path is non-linear and reveals several 
distinct strategic phases. The initial phase, from age 25 to 35, is 
characterized by a 100% allocation to the aggressive asset. This 
strategy is driven by the long time horizon, where the model 
prioritizes maximizing expected returns to accelerate wealth 
accumulation, understanding that there is ample time to recover 
from potential short-term market volatility. 

A significant strategic shift occurs around age 36, where the 
allocation drops sharply to 0%. This de-risking event indicates 
that the model projects the accumulated wealth is now on a 
sufficient trajectory to meet the final target through continued 

contributions and low-risk growth alone. The model’s priority 
shifts from growth maximization to capital preservation, 
entering a "cruise control" phase that lasts until approximately 
age 53. 

Perhaps the most counter-intuitive yet insightful behavior is 
the re-emergence of high-risk allocation in the final years before 
retirement. This is the model’s rational response to a new 
projection that the safe, low-growth path is no longer sufficient 
to meet the specific wealth target. Faced with a choice between 
the certainty of falling short and a small probability of success 
by taking on high risk, the utility-maximizing algorithm chooses 
the latter. This "end-game" volatility underscores the model's 
dynamic and state-aware nature. 

To understand the potential outcome of following this 
policy, the framework performs a Monte Carlo simulation (1000 
trials). The results, illustrating the range of possible final wealth, 
are visualized in Fig. 4. 

 

 

The median projected outcome (the 50th percentile) 
successfully meets the retirement target. The shaded "cone of 
uncertainty" represents the range between the 10th and 90th 
percentile outcomes, illustrating the inherent market risks 
associated with the strategy. 

B. Comparative analysis of Scenarios 

To test the framework’s adaptability and robustness, several 
other scenarios were simulated by altering key input parameters. 
The result demonstrated the model’s ability ti generate unique 
strategies tailored to different financial situations. 

1) The Low-Stress Scenario 
In the first test case, the retirement target was lowered 

significantly to IDR 2,000,000,000 to model a scenario where 
the financial goal much less ambitious and easier to achieve. 
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The strategy derived for this scenario exhibits a different 

pattern from the base case. The model recommends a 100% 
aggressive allocation for only the first year. A rapid de-risking 
process immediately follows, with the allocation to aggressive 
assets dropping to near zero by age 28. For the remainder of the 
32-year investment horizon, the strategy remains entirely 
conservative (100% in bonds). 

This result strongly confirms the initial hypothesis. The 
volatile "end-game" behavior observed in the base case is 
completely absent. The framework correctly identifies that the 
combination of initial capital, steady contributions, and a few 
years of early growth is more than sufficient to meet the modest 
target. Therefore, its logical priority shifts from growth 
maximization to aggressive capital preservation to eliminate 
market risk as quickly as possible. 

 

As illustrated, the median wealth projection (orange line) not 
only meets but vastly exceeds the IDR 2 billion target, ending 
closer to IDR 4.7 billion. Critically, even the 10th percentile 
outcome (the bottom edge of the shaded area), representing a 

relatively poor sequence of market returns, comfortably 
surpasses the target line by mid-life. This demonstrates the 
model's rationality: it correctly avoids taking on unnecessary 
risk when the stated goal is already well secured. 

2) The High-Ambition Scenario 
To further explore the model's decision-making under 

pressure, a third scenario was designed with a highly ambitious 
financial goal. The retirement target was increased to IDR 
10,000,000,000, with a slightly higher monthly contribution of 
IDR 5,000,000 to reflect a more aggressive savings plan. The 
resulting optimal strategy reveals a complex, multi-phased 
approach that differs significantly from prior cases.

 

 

The initial strategy, from age 25 to 37, is a prolonged period 
of 100% aggressive allocation. This extended growth phase is 
the model's logical response to the daunting target. However, a 
surprising de-risking event occurs around age 38, where the 
model temporarily shifts to a zero-risk portfolio. This suggests 
that the combination of a long, high-growth period and increased 
contributions led the model to momentarily project that it was 
on a viable path. 

Unlike the "Low-Stress Scenario," this conservative phase is 
short-lived. From age 40 onwards, the framework determines 
that the safe path is insufficient and begins to gradually re-
introduce risk, creating a volatile period of calculated 
allocations. This culminates in an early onset of the "end-game" 
high-risk behavior starting around age 49. The severe 
fluctuations in this final decade indicate the model is constantly 
re-evaluating its slim chances of success, taking on significant 
risk as a necessity to bridge the large remaining gap to the 10 
billion target. 
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While the median projection (the 50th percentile) 
successfully surpasses the ambitious target, the cone of 
uncertainty reveals a crucial detail: the 10th percentile outcome 
(the lower bound of the shaded area) finishes just below the IDR 
10 billion target line. This slim margin for error is precisely why 
the algorithm maintains a high-risk stance for the majority of the 
investment horizon. It calculates that a conservative strategy 
would lead to a near-certain failure to meet the goal, thus making 
a volatile, high-risk path the mathematically optimal choice. 
This scenario effectively showcases the framework's ability to 
craft complex, dynamic strategies when faced with challenging, 
high-stakes objectives. 

 

VI. CONCLUSION 

This paper has successfully designed, implemented, and 
analyzed an algorithmic framework for generating personalized, 
multi-stage investment strategies for retirement planning. 
Addressing the limitations of static, one-size-fits-all financial 
advice, this work framed the lifecycle savings problem as a 
finite-horizon dynamic optimization task. By applying the 
principles of Dynamic Programming, specifically the backward 
induction method, the developed engine is capable of computing 
a mathematically optimal asset allocation policy tailored to an 
individual's unique financial profile, goals, and time horizon. 

The experimental results demonstrate the framework's 
effectiveness and adaptability. The model successfully derived 
non-linear, intuitive, and sometimes counter-intuitive asset 
allocation glide paths. The analysis of various scenarios 
confirmed that the generated strategies are highly sensitive to 
input parameters; the model rationally advises more aggressive 
strategies for ambitious goals or shorter time horizons, and 
prioritizes capital preservation when goals are more easily 
attainable. A key insight is the model's "end-game" behavior, 
where it rationally takes on significant risk to avoid a certain 
failure to meet a target, highlighting its utility not just as a 
prescriptive tool, but as a powerful diagnostic system for 
financial plans. The primary contribution of this work is the 
validation that a DP-based framework can serve as a robust and 
sophisticated engine for personalized financial technology 
applications. 

https://github.com/poetoeee/Stima_Paper_13523096 

VII. SUGGESTION 

While the current framework provides a robust proof-of-
concept, several avenues exist for future enhancement to 
increase its realism and scope. A primary extension would 
involve expanding the model from two asset classes to multiple 
categories such as international stocks, real estate investment 
trusts (REITs), or commodities, although this would require 
managing a significantly more complex, multi-dimensional 
action space. Further sophistication could be achieved by 
incorporating stochastic market models where asset returns and 
volatilities are time-varying, moving beyond the current 
assumption of constant long-term averages. To improve its 
practical applicability, the framework could also be modified to 
include real-world financial frictions, such as the impact of 
capital gains taxes and transaction costs on net returns. Finally, 
a substantial future development would involve modeling the 
decumulation (withdrawal) phase of retirement, using a similar 
DP approach to optimize spending strategies and ensure the 
longevity of the accumulated wealth. 
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